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E;iological factors, such as HER2 signaling activity, may be important to measure in addition to expression and amplification of HER2 when identifying patients eligible for HER2 Figure 3. Characterization of Primary Ep|the||a| Cells Derived From Patient Tissue F|tt|ng Cutoff Determination and Prevalence Data From 114-Patient Test Set
therapies.
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The CELx HSF Test measures HER2 signaling activity in live tumor cells using a label-free impedance biosensor to identify HER2-negative breast cancer patients likely to be EpCAM (MFC) EpCAM (MFC) o g »
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Specimens: A training set of de-identified fresh breast tissue specimens was obtained from 114 patients diagnosed with HER2- breast cancer. See Summary of 114 (D) Comparison of expression levels of HER2, HER3 determined by flow HER? Fluorescence (MFC) 31-210) compared to HER2+ cell line.
HERZ2- tumor patient characteristics in Table 1. cytometry with test measurand.

Cell Culture: Methods for tissue extraction and primary cell culture are essentially as described previously [16,17]. Cell lines were maintained according to ATCC
recommendations and authenticated by ATCC in March 2016.

Flow Cytometry: Flow cytometry of all cell samples was performed on a BD FACSCalibur using cells harvested at the time of the CELx HSF Test. Flow cytometry results
are 100% concordant to the standard clinical IHC test evaluations for HER2 that were provided for each specimen by the clinic.

CELx HSF Test: Real-time live cell response to specific HER2 agonists (NRG1b and EGF) with or without an antagonist (2C4, a HER2 dimer blocker) was measured and Table 1 Summary Of Patient CharaCtBriStiCS summary Uf RBSU"S Gﬂ"GlUSiUnS

quantified using an xCELLigence RTCA impedance biosensor (ACEA Biosciences). From these responses, the net amount of HER2 participation in HER-family signaling
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with breast cancer classitied as HER2™ to measure HERZ pathway stimulation and
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! 60 54 CELXx test, that was greater than the median HER2g of the HER2+ cell lines.
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Figure 1. Platform Biosensor Sensitivity Enables Quantification of HERZ? Signaling ~ Figure 2. HER2- Abnormal Signaling by CELx HSF Test I o4 20 . Ata cutoff value of 250 signaling units, specificity is >99% (FP<1%) and
v . . sensitivity is 87%, indicative of an accurate test.
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